Our new LangChain Academy course on Deep Agents is now live! Enroll for free.
Our new LangChain Academy course on Deep Agents is now live! Enroll for free.
import json
from langchain_community.adapters.openai import convert_message_to_dict
from langchain_core.messages import AIMessage
with open("example_data/dataset_twitter-scraper_2023-08-23_22-13-19-740.json") as f:
data = json.load(f)
# Filter out tweets that reference other tweets, because it's a bit weird
tweets = [d["full_text"] for d in data if "t.co" not in d["full_text"]]
# Create them as AI messages
messages = [AIMessage(content=t) for t in tweets]
# Add in a system message at the start
# TODO: we could try to extract the subject from the tweets, and put that in the system message.
system_message = {"role": "system", "content": "write a tweet"}
data = [[system_message, convert_message_to_dict(m)] for m in messages]
Was this page helpful?