Overview

A vector store stores embedded data and performs similarity search.

Interface

LangChain provides a unified interface for vector stores, allowing you to:
  • add_documents - Add documents to the store.
  • delete - Remove stored documents by ID.
  • similarity_search - Query for semantically similar documents.
This abstraction lets you switch between different implementations without altering your application logic.

Initialization

To initialize a vector store, provide it with an embedding model:
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embedding=SomeEmbeddingModel())

Adding documents

Add Document objects (holding page_content and optional metadata) like so:
vector_store.add_documents(documents=[doc1, doc2], ids=["id1", "id2"])

Deleting documents

Delete by specifying IDs:
vector_store.delete(ids=["id1"])
Issue a semantic query using similarity_search, which returns the closest embedded documents:
similar_docs = vector_store.similarity_search("your query here")
Many vector stores support parameters like:
  • k — number of results to return
  • filter — conditional filtering based on metadata

Similarity metrics & indexing

Embedding similarity may be computed using:
  • Cosine similarity
  • Euclidean distance
  • Dot product
Efficient search often employs indexing methods such as HNSW (Hierarchical Navigable Small World), though specifics depend on the vector store.

Metadata filtering

Filtering by metadata (e.g., source, date) can refine search results:
vector_store.similarity_search(
  "query",
  k=3,
  filter={"source": "tweets"}
)

Top integrations

Select embedding model:
pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
  os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU "langchain[azure]"
import getpass
import os

if not os.environ.get("AZURE_OPENAI_API_KEY"):
  os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass("Enter API key for Azure: ")

from langchain_openai import AzureOpenAIEmbeddings

embeddings = AzureOpenAIEmbeddings(
    azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
    azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],
    openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],
)
pip install -qU langchain-google-genai
import getpass
import os

if not os.environ.get("GOOGLE_API_KEY"):
  os.environ["GOOGLE_API_KEY"] = getpass.getpass("Enter API key for Google Gemini: ")

from langchain_google_genai import GoogleGenerativeAIEmbeddings

embeddings = GoogleGenerativeAIEmbeddings(model="models/gemini-embedding-001")
pip install -qU langchain-google-vertexai
from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings(model="text-embedding-005")
pip install -qU langchain-aws
from langchain_aws import BedrockEmbeddings

embeddings = BedrockEmbeddings(model_id="amazon.titan-embed-text-v2:0")
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pip install -qU langchain-ollama
from langchain_ollama import OllamaEmbeddings

embeddings = OllamaEmbeddings(model="llama3")
pip install -qU langchain-cohere
import getpass
import os

if not os.environ.get("COHERE_API_KEY"):
  os.environ["COHERE_API_KEY"] = getpass.getpass("Enter API key for Cohere: ")

from langchain_cohere import CohereEmbeddings

embeddings = CohereEmbeddings(model="embed-english-v3.0")
pip install -qU langchain-mistralai
import getpass
import os

if not os.environ.get("MISTRALAI_API_KEY"):
  os.environ["MISTRALAI_API_KEY"] = getpass.getpass("Enter API key for MistralAI: ")

from langchain_mistralai import MistralAIEmbeddings

embeddings = MistralAIEmbeddings(model="mistral-embed")
pip install -qU langchain-nomic
import getpass
import os

if not os.environ.get("NOMIC_API_KEY"):
  os.environ["NOMIC_API_KEY"] = getpass.getpass("Enter API key for Nomic: ")

from langchain_nomic import NomicEmbeddings

embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
pip install -qU langchain-nvidia-ai-endpoints
import getpass
import os

if not os.environ.get("NVIDIA_API_KEY"):
  os.environ["NVIDIA_API_KEY"] = getpass.getpass("Enter API key for NVIDIA: ")

from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings

embeddings = NVIDIAEmbeddings(model="NV-Embed-QA")
pip install -qU langchain-voyageai
import getpass
import os

if not os.environ.get("VOYAGE_API_KEY"):
  os.environ["VOYAGE_API_KEY"] = getpass.getpass("Enter API key for Voyage AI: ")

from langchain-voyageai import VoyageAIEmbeddings

embeddings = VoyageAIEmbeddings(model="voyage-3")
pip install -qU langchain-ibm
import getpass
import os

if not os.environ.get("WATSONX_APIKEY"):
  os.environ["WATSONX_APIKEY"] = getpass.getpass("Enter API key for IBM watsonx: ")

from langchain_ibm import WatsonxEmbeddings

embeddings = WatsonxEmbeddings(
    model_id="ibm/slate-125m-english-rtrvr",
    url="https://us-south.ml.cloud.ibm.com",
    project_id="<WATSONX PROJECT_ID>",
)
pip install -qU langchain-core
from langchain_core.embeddings import DeterministicFakeEmbedding

embeddings = DeterministicFakeEmbedding(size=4096)
pip install -qU "langchain[langchain-xai]"
import getpass
import os

if not os.environ.get("XAI_API_KEY"):
  os.environ["XAI_API_KEY"] = getpass.getpass("Enter API key for xAI: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("grok-2", model_provider="xai")
pip install -qU "langchain[langchain-perplexity]"
import getpass
import os

if not os.environ.get("PPLX_API_KEY"):
  os.environ["PPLX_API_KEY"] = getpass.getpass("Enter API key for Perplexity: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("llama-3.1-sonar-small-128k-online", model_provider="perplexity")
pip install -qU "langchain[langchain-deepseek]"
import getpass
import os

if not os.environ.get("DEEPSEEK_API_KEY"):
  os.environ["DEEPSEEK_API_KEY"] = getpass.getpass("Enter API key for DeepSeek: ")

from langchain.chat_models import init_chat_model

model = init_chat_model("deepseek-chat", model_provider="deepseek")
Select vector store:
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore

vector_store = InMemoryVectorStore(embeddings)
VectorstoreDelete by IDFilteringSearch by VectorSearch with scoreAsyncPasses Standard TestsMulti TenancyIDs in add Documents
AstraDBVectorStore
Chroma
Clickhouse
CouchbaseSearchVectorStore
DatabricksVectorSearch
ElasticsearchStore
FAISS
InMemoryVectorStore
Milvus
Moorcheh
MongoDBAtlasVectorSearch
openGauss
PGVector
PGVectorStore
PineconeVectorStore
QdrantVectorStore
Weaviate
SQLServer
ZeusDB

All Vectorstores

Activeloop Deep Lake

Alibaba Cloud OpenSearch

AnalyticDB

Annoy

Apache Doris

ApertureDB

Astra DB Vector Store

Atlas

AwaDB

Azure Cosmos DB Mongo vCore

Azure Cosmos DB No SQL

Azure AI Search

Bagel

BagelDB

Baidu Cloud ElasticSearch VectorSearch

Baidu VectorDB

Apache Cassandra

Chroma

Clarifai

ClickHouse

Couchbase

DashVector

Databricks

IBM Db2

DingoDB

DocArray HnswSearch

DocArray InMemorySearch

Amazon Document DB

DuckDB

China Mobile ECloud ElasticSearch

Elasticsearch

Epsilla

Faiss

Faiss (Async)

FalkorDB

Gel

Google AlloyDB

Google BigQuery Vector Search

Google Cloud SQL for MySQL

Google Cloud SQL for PostgreSQL

Firestore

Google Memorystore for Redis

Google Spanner

Google Vertex AI Feature Store

Google Vertex AI Vector Search

Hippo

Hologres

Jaguar Vector Database

Kinetica

LanceDB

Lantern

Lindorm

LLMRails

ManticoreSearch

MariaDB

Marqo

Meilisearch

Amazon MemoryDB

Milvus

Momento Vector Index

Moorcheh

MongoDB Atlas

MyScale

Neo4j Vector Index

NucliaDB

Oceanbase

openGauss

OpenSearch

Oracle AI Vector Search

Pathway

Postgres Embedding

PGVecto.rs

PGVector

PGVectorStore

Pinecone

Pinecone (sparse)

Qdrant

Relyt

Rockset

SAP HANA Cloud Vector Engine

ScaNN

SemaDB

SingleStore

scikit-learn

SQLiteVec

SQLite-VSS

SQLServer

StarRocks

Supabase

SurrealDB

Tablestore

Tair

Tencent Cloud VectorDB

ThirdAI NeuralDB

TiDB Vector

Tigris

TileDB

Timescale Vector

Typesense

Upstash Vector

USearch

Vald

VDMS

Vearch

Vectara

Vespa

viking DB

vlite

Weaviate

Xata

YDB

Yellowbrick

Zep

Zep Cloud

ZeusDB

Zilliz